Beyond the Break: Understanding Bone Health as Part of Overall Musculoskeletal Health

Andy Kin On Wong, 2020. andy.wong@uhnresearch.ca TEL: 905-399-0329

1

Disclosures

- I hold 2 CIHR Grants (PJT-156274, PJT-166012)
- Consulted for academic institutions (OHSU, UCSF, UPitt, Sick Kids)
- I have not consulted with industry
- I have no conflicts of interests to declare

Beyond the Break – Webinar Learning Objectives

- 1) Understand the origin and evolution of bone, muscle, fat, & cartilage
- 2) Appreciate the interactions between:
 - a. Bones & muscles
 - b. Fat in bones & muscles
 - c. Bones & muscles surrounding joints
- 3) Summarize perspective on bone health as part of overall MSK health

Estrogen and Bone

- key regulator of bone metabolism¹
- deficiency → osteoporosis
- Menopause → declines BMD
 - 9.1% @ FN & 10.6% @ LS¹
- [estrogen] associated with fractures²
 - <5 pg/mL associated with a 2.5fold increased hip & vert fx

 Greendale GA et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women's Health Across the Nation (SWAN). J Bone Miner Res. 2012; 27(1):111-8.

2. Cummings SR et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. NEJM. 1998;339(11):733-8.

Estrogen and Muscle, Joints, Pain

- Estrogen may attenuate agerelated decline in lean muscle mass^{3,4}
- impact joints tissues, including articular cartilage
- Associated with chronic pain in muscles and joints⁵

3. Chesterton LS, Barlas P, Foster NE, Baxter GD, Wright CC. Gender differences in pressure pain threshold in healthy humans. *Pain*. 2003;101(3):259-66.

4. Fillingim RB. Sex, gender, and pain: women and men really are different. *Current Review of Pain*. 2000;4(1):24-30.

5. de Kruijf M, Stolk L, Zillikens MC, de Rijke YB, Bierma-Zeinstra SM, Hofman A, Huygen FJ, Uitterlinden AG, van Meurs JB. Lower sex hormone levels are associated with more chronic musculoskeletal pain in community-dwelling elderly women. *Pain*. 2016;157(7):1425-31. 9

Discriminative Power for Fx

 Most bone-muscle indices had poor sensitivity and specificity for identifying those with fractures

Parameter	AUC	Sensitivity	Specificity	p-value
Bone strength/muscle area	0.579	56.06%	53.56%	0.009
Bone mass/muscle mass	0.621	58.96%	58.12%	<0.001
LS BMD	0.643	60.45%	59.53%	<0.001
TH BMD	0.672	61.94%	61.46%	<0.001

- DXA difficult to tease out true lean tissue mass
- Analyses done in general area but not specific muscle group inserting into bone

(Wong et al 2014, J Musculoskel Neur Int)

Andy Kin On Wong, 2020. andy.wong@uhnresearch.ca TEL: 905-399-0329

Muscle Proper	ties & Od	ds for Fragi	lity Fr	actures 🕊	aMos La Malikentir Osteporais Study vaademer milleratriger av Lotte			
All women Mean age: 72.2	± 7.7 years Mea	n BMI: 27.7 ± 5.4 kg/r	m ² 4 Year	rs N= 525 (46 fx)				
	Variable	OR (Unadj)	Express ed per SD	OR (Adj)	Express ed per SD			
	MD	1.57 (1.19,2.08)	-3.77	1.68 (1.20, 2.34)	-3.76			
	MM	1.13 (0.88, 1.45)	-66.37	1.31 (0.98, 1.75)	-66.76			
b bath	MCSA	0.98 (0.76, 1.26)	-954.4	1.15 (0.85, 1.55)	-966.0			
	pQCT Muscle density + bone at the 66% site							
	$MD + vBMD_i$	1.56 (1.18, 2.06)	-3.72	1.67 (1.20, 2.32)	-3.71			
Muscle fat volume accounts for 54% of variance in	pQCT Muscle density + bone at the 4% site							
muscle density (MD)	$MD + vBMD_i$	1.63 (1.22, 2.17)	-3.72	1.64 (1.17, 2.29)	-3.71			
Lower muscle and bone de	nsity associate	ed with fractures	indepe	ndently of one a	nother			

Bone*Muscle Interactions' Associations with Fractures

Bone*Muscle @ 66% site	N(Fx)	Interaction P-value		
Density	449(37)	0.002		
Area	449(37)	0.363		
Content	449(37)	0.120		

Conditional Effects	HR (95% CI)		
Cortical vBMD @ 1st (lowest) quartile of MD	0.59(0.34,1.02)		
Cortical vBMD @ 2nd quartile of MD	1.09(0.75,1.58)		
Cortical vBMD @ 3rd quartile of MD	2.01(1.30,3.12)		
Cortical vBMD @ 4 th (highest) quartile of MD	3.74(1.90,7.35)		

- Normal muscle but abnormal bone was associated with a higher risk for fragility fractures
- Effect largely at the cortex
 - effect blunted for integral vBMD, and
 - not significant for trabecular vBMD

Andy Kin On Wong, 2020. andy.wong@uhnresearch.ca TEL: 905-399-0329

AMBERS

23

The Appendicular Muscle and Bone Extension Research Study (AMBERS) (N=312) – CIHR Funded

	No Osteoporosis (N=269)				Osteoporosis (N=54)				
Variables	Mean/N	SD/%	Min	Max	Mean/N	SD/%	Min	Max	p-Value
Age (years)	75.26	6.06	63	89	76.48	5.58	67	86	0.173
BMI (kg/m²)	30.08	5.61	17.93	48.24	26.34	5.9	16.41	53.8	<0.001
66% FA (mm²)	812.64	386.88	223.43	2553.11	886.7	881.69	329.33	6320.94	0.354
66% pFA (%)	13.16	5.31	4.97	34.67	14.68	7.22	6.74	42.62	0.094
66% MD (mg/cm ³)	67.43	5.94	46.44	76.1	67.59	4.37	52.86	74.04	0.853
66% MwD (mg/cm³)	21.61	10.78	0.00	57.50	16.99	8.01	2.40	40.90	0.004
(Wong et al, 2020 J Bone Miner Res)									24

Fat infiltration in bone & muscle are related

Higher fat content in bone marrow & calf muscle better related in those with osteoporosis

	Per 10 mg/cm ³	Fully Adjusted		
Muscle fat	Marrow Fat	В	SE	P-value
FA (mm ²)	MwD (thres) 66%	-84.08	27.56	0.002 a
pFA (%)	MwD (thres) 66%	-0.90	0.30	0.003
MD (mg/cm ³)	MwD (thres) 66%	0.68	0.25	0.007

	Per 10 mg/cm ³	No Osteoporosis (N=246)			Oste			
Muscle fat	Marrow fat	В	LowerCl	UpperCl	В	LowerCl	UpperCl	Int P*
FA (mm ²)	MwD (thres) 66%	-29.10	-66.94	8.74	-591.33	-1004.70	-177.96	<0.001 ^a
pFA (%)	MwD (thres) 66%	-0.36	-0.90	0.17	-3.90	-7.41	-0.39	0.048
MD (mg/cm ³)	MwD (thres) 66%	0.40	-0.13	0.94	0.92	-0.45	2.29	0.775

(Wong et al, 2020 J Bone Miner Res)

Joint Diseases - Osteoarthritis (OA)

- Increased incidence of OA in the **knee joint** (Buckwalter et al. 2007)
- By 2040, 24% of Canadians will have arthritis, with up to 60% being women over 65
- Affects cartilage, knee angle but subchondral bone and bone marrow also impacted
- Traditionally associated with obesity & post-trauma
 - Treated with weight management & pain management

Image from Sofat et al. 2011

Distribution of <u>Non-Overweight</u> in Knee OA Patients

Osteoarthritis Initiative (OAI): men and wor • 18.4% < BMI of 25 kg/m ² • 37.2% between 25 and 30 kg/m ² , 44.4% >= 30 kg/m ²	men with KL \geq 2 (N=1086) (Wong et al, 2018 abstract)	
Ulm Osteoarthritis Study (N=809 candidate	s for TKA & THA) (Sturmer et al, 2000)	Mean distribution
 14.1% < BMI of 25 kg/m² 45.0% between 25 and 30 kg/m², 40.9% >= 30 kg/m 	n²	of non-overweight knee OA :
Swedish cohort (N=825 JSW <= 3mm) (Holn	nberg et al, 2005)	24.95%
 19.0% < BMI of 25 kg/m² 50.0% between 25 and 30 kg/m², 30.5% >= 30 kg, 	/m ²	(range 10.5-47.2%)
Catalonia Spain (N=83,469, primary care do	ctor record of knee OA diagnosis) (Reyes et al, 2016)	
 10.5% < BMI of 25 kg/m² 37.6% between 25 and 30 kg/m², 51.8% >= 30 kg, 	/m ²	
COPCORD, Northern China (N=983, doctor o	dx w/ radiographic confirmation) (Zhang et al, 2013)	COPCORD, Southern China (N=244, symptomatic &
 47.2% < BMI of 24 kg/m² 35.3% between 24 and 28 kg/m², 	14.4% >= 28 kg/m ²	 36.48% < BMI of 24 kg/m², 46.31% between 24 and 28 kg/m²
Singapore Chinese Health Study (N=1649 TI • 35.7% < BMI of 24 kg/m ² • 34.5% between 24 an 27 kg/m ² , 29.8% >= 27kg	KR for severe knee OA) (Leung et al, 2015)	• 17.21% >= BMI of 28 kg/m ²
Arthritis Clinics in Phillipines (N=533 w/ rac • 18.2% < BMI of 23 kg/m ²	diographic evidence) (Racaza et al, 2012)	
 33% between 23 and 25 kg/m² 	48.8% above 25 kg/m ²	29

29

Recognized bone abnormalities in Knee OA

Bone Marrow Lesions (BMLs) in Knee OA

- **BML** = Acute or recurrent damage within subchondral bone leading to inflammation (Sharkey et al. 2012)
- BMLs associated with <u>weight bearing pain</u> (RR: 2.0, p<0.001) (Lo et al. 2009)
- Larger BMLs associated with <u>subchondral attrition</u> (flattening) (**OR:18.8(15.9,22.4)**) (MOST Study, Roemer et al. 2010)
- Weaker bone from OP may increase risk of subchondral bone damage → BML formation

Is there any basis for bone metabolism / osteoporos osteoarthritis?	is to influe	ence
<u>Global bone Abnormalities in Knee OA</u>	Type I collage	n telopeptides
 <u>Bone resorption markers</u> 31-87% higher in OA vs controls BUT no different from OP group (p<0.01) (Chingford study, Bettica et al. 2002) 	Control Prog OA Non-Prog OA Osteoporosis	N-terminal 37.0 (25.5, 60.4) 53.9 (39.6, 79.1) ⁺ 40.1 (28.1, 56.5)§ 59.8 (44.1, 80.4) ⁺
 Women with OA more likely to <u>fracture limbs</u> (OR 2.49(1.77, 3.48)) compared to controls with normal or osteopenic bone density (Chan et al. 2014) 	Control Prog OA Non-Prog OA Osteoporosis	<u>C-terminal</u> 126.5 (77.5, 205.8) 214.0 (145.2, 285.4)‡ 180.6 (96.1, 246.7)¶ 236.5 (178.9, 293.2)†
 Men with vert disc space narrowing & osteophytosis at increased risk of <u>vert fractures</u> (HR: 1.84-2.52) (Pariente et al. 2017) 		31

Recognized muscle abnormalities in knee OA

Muscle Association with Osteoarthritis

- Radiographic knee OA was associated with baseline <u>sarcopenia</u> in women (RR: 1.91(1.71, 3.11)) (Misra et al. 2018)
- Leg lean mass was lower in knee OA (19.2 ± 2.7%) compared to controls (21.0 ± 2.9%) (p<0.001) (Toda et al. 2000)
- Baseline <u>knee extensor strength</u> in women associated with knee OA (OR:1.72(1.16, 2.56)) (Culvenor et al. 2016)
- Higher <u>knee adduction moment</u> associated with greater cartilage loss (**20.5% variance explained**) (Maly et al, 2015)
- No studies examining periarticular muscle specifically

Image from www.radiopaedia.org

Image from www.arthritis-health.com ₃₂

Osteoarthritis (OA) Initiative (N=1086) • 15.2% of patients with knee OA have osteoporosis • 18.4% BMI of <25 kg/m ²							
Var	OP (214)	No OP (845)	P-value	 37.2% between 44.4% >= 30 kg/ 	25 and 30 kg/m ²	Kn ee D	DXA
Age	67.2± 8.4	64.2± 8.9	<0.001	Knee MRI	Knee MRI	L	м
BMI	29.1± 4.9	30.5± 4.9	<0.001	R	L		
PASE	128± 77	154± 84	<0.001	Compartment		Octooporosis	P Value*
Serum	27.74	25.60	0.237	compartment	(N=237)	(N=52)	F-value
Vit D	±10.42	±9.78		Medial aBMD	1.135 g/cm ²	1.042 g/cm ²	<0.001
FN	0.21±	0.49±	0.180	Lateral aBMD	1.023 g/cm ²	0.925 mg/cm ²	<0.001
BMD T-	1.15	1.10		Medial Tb.Sp	1.637 mm	2.245 mm	<0.001
score (167)				# of BMLs	1.23 # total	0.96 # total	0.043
(107)				Edema in BMLs	2.66%	1.99%	0.040 33

In the OP Group – Cartilage was not associated with pain (but neither was bone*)

General Linear Model with OP Group Interaction – Followed by Pick-a-Point Probing

Cartilage measures	No Osteoporosis (N=852)	Osteoporosis	Interaction						
		(N=165)	P-value						
Expressed per 1 mm lower	KOOS Sympton	KOOS Symptoms (lower scores greater symptoms)							
Medial wb ThC (mm)	-2.4(-1.4 <i>,</i> -3.5)	0.7(-2.0,3.5)	0.027						
Lateral wb ThC (mm)	-2.3(-1.4,-3.3)	1.7(-1.2,4.6)	0.008						
Medial mean ThC (mm)	-4.0(-0.3 <i>,</i> -7.7)	6.5(-3.0,16.1)	0.038						
Lateral mean ThC (mm)	-7.4(-4.8,-9.9)	2.5(-5.4,10.3)	0.011						
Affected wb ThC (mm)	-4.1(-3.1,-5.1)	0.2(-2.7,3.0)	0.003						
Affected mean ThC (mm)	-9.5(-6.2,-12.8)	3.0(-6.5,12.5)	0.009						
	WOMAC Stiffne	ss (Higher scores greater symp	toms)						
Medial wb ThC (mm)	0.2(0.1,0.3)	0.0(-0.3, 0.2)	0.093						
Lateral wb ThC (mm)	0.2(0.1,0.3)	-0.2(-0.5,0.1)	0.022						
Medial mean ThC (mm)	0.6(0.2,0.9)	-0.8(-1.8,0.2)	0.021						
Lateral mean ThC (mm)	0.5(0.3,0.8)	-0.5(-1.3,0.4)	0.035						
Affected wb ThC (mm)	0.3(0.2,0.4)	0.0(-0.3,0.3)	0.054						
Affected mean ThC (mm)	0.8(0.5,1.1)	-0.4(-1.4,0.6)	0.047						
* Subchondral DXA and MRI was only examined in 289 with only 52 OP cases									

The Appendicular Muscle and Bone Extension Research Study (AMBERS) (N=312) – CIHR Funded

- 48 month prospective cohort study
- imaging bones and muscles (peripheral CT, DXA)
- captured knee surgeries, radiographic ascertainment
- Knee OA diagnosis validated against primary care data

Univariate General Linear Models

CIHR IR

		Knee O	A (N=80)			No Knee	e OA (N=2	32)	
Variables	Mean/#	SD/%	Min	Max	Mean/#	SD/%	Min	Max	p Value
Age (years)	76	5.8	64	89	75.4	6.1	63	86	0.186
Height (cm)	156.68	6.68	144	174	155.4	6.32	141	172	0.285
Weight (kg)	78.89	13.73	57	115	67.94	13.86	35	108	0.015
TUG (s)	10.73	2.69	6.68	18.78	10.36	3.35	6.12	38.53	0.055
BMD T-score	-1.54	1.03	-3.6	0.9	-1.71	1.03	-5.7	3.2	0.824
Antires Use	53	37.9%			54	29.5%			0.114
GC Use	11	7.9%			10	5.5%			0.387
Fragility Fx	11	7.9%			13	7.1%			0.798

35

Knee OA & OP BONE Differences in Postmenopausal Women – AMBERS (N=312)

General Linear Model – Accounting for covariates: age	, BMI, use of OP medication,	GC use, kidney/liver disease/diabetes
	, , , ,	

	KOA	+OP vs. Ne	either	KO	OA+OP vs.	ОР	КО	A+OP vs K	ÓA
libial bone vars	В	Lower CL	Upper CL	В	Lower CL	Upper CL	В	Lower CL	Upper CL
Trabecular separation (mm)	0.101	0.029	0.173	-0.003	-0.108	0.101	0.139	0.077	0.201
Bone volume (fraction)	-0.081	-0.141	-0.021	-0.001	-0.059	0.056	-0.113	-0.176	-0.050
Cortical BMD (mg/cm ³)	-57.43	-101.18	-13.68	-19.75	-53.26	5 13.76	-56.86	-108.25	-5.47
Trabecular BMD (mg/cm ³)	-16.56	-31.89	-1.23	-1.35	-11.44	8.74	-21.16	-39.34	-2.98

Bone properties in those with both Knee OA and OP are no different from those with just OP alone

Postmenopausal Knee Imaging of Intramedullary Pressure (PoKIMP Study) – CIHR Funded

- Cross-sectional study, target N=125 convenience sampling
- Postmenopausal women 50-85 years old, BMI < 25 kg/m²
- Variable degrees of knee pain
- No joint replacements and no RA
- No contraindications to MRI, no kidney disease (for Gd injection)
- Anteroposterior knee radiographs
- Peripheral CT of knee (subchondral bone & periarticular muscle)
- MRI: PD-weighted, water-excitation, fat-water separated Dixon, perfusion MRI (DCE-MRI)
- Functional measures, 3 pain measures (painDETECT, ICOAP, KOOS)

Andy Kin On Wong, 2020. andy.wong@uhnresearch.ca TEL: 905-399-0329

N=50	Неа	althy	Kn	ee OA		
Subchondral Tib/Fem	Mean	SD	Mean	SD	p-value	
Tissue Mineral Density	351.9	40.07	304.2	52.39	<0.001	
Bone Mineral Density	307.7	50.81	252.1	65.41	<0.001	
 Variances can be assumed to Difference in periartic 	be equal (p cular mu	value: 0.11) uscle bet	ween gr	oups		Univariate analysis due low sample s at present
 Variances can be assumed to Difference in periartic N=50 	be equal (p cular mu Hea	value: 0.11) uscle bety althy	ween gr Kr	oups nee OA		Univariate analysis due low sample s at present
 Variances can be assumed to Difference in periartic N=50 Periarticular measures 	be equal (p cular mu Hea Mean	value: 0.11) Jscle bett althy SD	ween gr Kr Mean	oups nee OA SD	p-value	Univariate analysis due low sample s at present
 Variances can be assumed to Difference in periartic N=50 Periarticular measures Fat area 	be equal (p cular mu Hea Mean 744.7	value: 0.11) Uscle betr althy SD 289.5	ween gr Kr Mean 638.1	oups nee OA SD 199.7	p-value 0.012	Univariate analysis due low sample s at present
 Variances can be assumed to Difference in periartic N=50 Periarticular measures Fat area Fat content 	be equal (p cular mu Hea Mean 744.7 12.42	value: 0.11) Uscle bet althy SD 289.5 3.63	ween gr Kr Mean 638.1 10.98	TOUPS Tee OA SD 199.7 2.80	p-value 0.012 0.010	Univariate analysis due low sample s at present
 Variances can be assumed to Difference in periartic N=50 Periarticular measures at area at content Total area 	be equal (p cular mu Hea Mean 744.7 12.42 3767	value: 0.11) uscle betv althy SD 289.5 3.63 713	ween gr Kr Mean 638.1 10.98 3545	OUPS Dee OA SD 199.7 2.80 481	p-value 0.012 0.010 0.033	Univariate analysis due low sample s at present

Synthesis of Tissue Interactions

- Bone-Muscle-Joints interact in varying degrees
- Loss of integrity of one could affect the other
 - And may be complemented by invasion of fat
- Common denominator:
 - Its origin: mesenchymal stem cells driven by differentiation
 - External factors: hormones, drugs, environment, exercise
- Effects may not be restricted to one (central) site

Master's Students: Rachel Whyte, Siwen Liu, Vahid Anwari PhD Students: Emily Ha, Tristan Watson

Undergrads: Anthony Pokhoy, Abinaa Chandrakumar, Angelina Wong, Rameen Usman High School: Matei Gardea Coordinator: Shannon Gale

DALLA LANA SCHOOL OF PUBLIC HEALTH **Collaborators:**

AMBERS study: Rick Adachi Tobago Cohort Study: Joseph Zmuda OAI Imaging: John Lynch

Funding: JDMI AIF (Naraghi, Ali) CIHR Project Grant (PJT-156274) CIHR Project Grant (PJT-166012) CIHR Operating Grant (MOP-115094)

