Frailty and Sarcopenia

- Ahmed Negm MD, MSc, PhD
- Post-doctoral Fellow
- Faculty of Rehabilitation Medicine
- University of Alberta

Table of Contents

- ♦ Frailty
 - Definitions
 - Prevalence and Impact
 - ♦ Measurement
 - Treatment and preventions
- ♦ Sarcopenia
 - Definitions
 - Prevalence and Impact
 - Measurement
 - Treatment and preventions

What is Frailty?

- Decline in physiologic capacity of of several body systems, function greatly reduced; the person is more suspectable to external stressors^{1,2}
- Age-related *physiological dysregulation* in multiple body system
- Physical state that exists before occurrence of disability^{1,3}
- frailty is potentially reversible and its associated functional decline is also a potentially preventable disability^{1,3,4}

FUNCTIONAL ABILITIES

 Resilience: the ability to recover or optimize function in the face of agerelated losses, diseases or stressors^{1,2}

 Intrinsic capacity: the composite of the physical and mental capacities of an individual^{3,4}

KEY DOMAINS OF INTRINSIC CAPACITY

- 2- Whitson HE etal, J Gerontol A Biol Sci Med Sci 2016; 71(4): 489-95.
- 3-World Health Organization. World report on ageing and health. World Health Organization. 2015
- 4- Chenkai Wu et al, The Journals of Gerontology: Series A, , glz247.

¹⁻ Resnick B et al, Gerontologist 2011; 51(5): 643-52.

 Losses of intrinsic capacity or lower Resilience in older age are frequently characterized by the manifestation of common problems, such as difficulties with hearing, seeing, memory, walking at usual pace, continence, and positive affect^{1,2}

Araujo de Carvalho I et al, 2017; 95. 756–763. Thiyagarajan JA et al, 2019; PLoS Med 16(10).

Why frailty in important?

8

Frailty prevalence

Frailty and adverse outcomes

Study	Year	Country	y Number of participants	Length of follow- up	Falls HR/OR 95% CI		Hospitalisa 95	ition HR/OR % CI	Mortality HR/OR 95% Cl	
					Intermed frailty	Severe frailty	Intermed frailty	Severe frailty	Intermed frailty	Severe frailty
Cardiovascular Health Study (CHS) ¹	2001	US	5317	7 years	HR 1.12 1.00-1.26	HR 1.23 1.50-2.21	HR 1.11 1.03-1.19	HR 1.27 1.11-1.46	HR 1.32 1.13-1.55	HR 1.63 1.27-2.08
Canadian Study of Health & Aging (CSHA) ²	2004	Canada	9008	5 years	NA	NA	NA	NA	OR 2.54 1.92-3.37	OR 3.69 2.26-6.02
Women's Health & Aging Study (WHAS) ³	2006	US	1438	3 years	HR 0.92 0.63-1.64	HR 1.18 0.63-2.19	HR 0.99 0.67-1.47	HR 0.67 0.33-1.35	HR 3.50 1.91-6.39	HR 6.03 3.00-12.0
Study of Osteoporotic Fractures (SOF) ⁴	2008	US	6701	4.5 years	OR 1.23 1.02-1.48	OR 2.44 1.95-3.04	NA	NA	OR 1.54 1.40-1.69	HR 2.75 2.46-3.07

1- Fried LP et al, J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. 2- Rockwood K et al, J Gerontol A Biol Sci Med Sci. 2004;59(12):1310–7. 3- Bandeen-Roche K et al, J Gerontol A Biol Sci Med Sci. 2006;61(3):262–6. 4- Ensrud KE, et al, Arch Intern Med. 2008;168(4):382–9. 5- Clegg A et al, The lancet. 2013 Mar 2;381(9868):752-62.

Frailty hospitalization and mortality

• Hospitalizations

3			Frail	Non-frail		HR	HR	Second Second
Study or Subgroup	log[HR]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random	, 95% Cl
Ferguson et al, 2017 ³⁶	0.157	0.2769	52	32	6.3%	1.17 [0.68, 2.01]		•
Gastelurrutia et al, 20143	0.4762	0.1091	581	733	40.3%	1.61 [1.30, 1.99]		
Madan et al. 201611	0.6523	0.275	26	14	6.3%	1.92 [1.12, 3.29]		
McNallan et al, 20137	0.5008	0.1754	84	116	15.6%	1.65 [1.17, 2.33]		
Rodriguez-Pascual et al, 2017 ²	0.5008	0.2023	286	211	11.7%	1.65 [1.11, 2.45]		
Vidán et al, 2016*	0.3148	0.1555	307	99	19.8%	1.37 [1.01, 1.86]	F	
Total (95% CI)			1336	1205	100.0%	1.56 [1.36, 1.78]		•
Heterogeneity: Tau ² - 0.00; Chi ²	- 2.61. d	f = 5 (P	- 0.76	$1: 1^2 = 0.06$		100.0000000000000000000000000000000000	1.1.	11
Test for overall effect Z = 6.39 (P < 0.000	01)					0.5 0.7 1 Decreased risk	1.5 2 Increased risk

Mortality

A			Frail 1	Non-frail		HR	HR
Study or Subgroup	log[HR]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Boxer et al, 20105	0.4574	0.1621	15	44	17.6%	1.58 [1.15, 2.17]	
Cacciatore et al, 20056	0.392	0.18	18	102	14.2%	1.48 [1.04, 2.11]	
Ferguson et al. 201716	1.3137	0.5524	52	32	1.5%	3.72 [1.26, 10.98]	
Gastelumutia et al. 20141	0.3221	0.093	581	733	53.1%	1.38 [1.15, 1.66]	-
Madan et al, 201611	0.7793	0.7938	26	14	0.7%	2.18 [0.46, 10.33]	
McNallan et al, 201319	0.7129	0.3689	46	69	3.4%	2.04 [0.99, 4.20]	
Rodriguez-Pascual et al, 2017 ²	0.7655	0.2849	286	211	5.7%	2.15 [1.23, 3.76]	
Vidán et al, 2016*	0.7561	0.3513	316	100	3.7%	2.13 [1.07, 4.24]	
Total (95% CI)			1340	1305	100.0%	1.54 [1.34, 1.75]	•
Heterogeneity: Tau ² = 0.00; Chi ⁴	= 7.01. d	f = 7 (P	= 0.43);	$1^2 = 0\%$			
Test for overall effect: Z = 6.31 (P < 0.000	01)		it and a th			0.1 0.2 0.5 1 2 5 1 Decreased risk Increased risk

Frailty, morbidity and mortality

Mosquera C et al, Journal of the American College of Surgeons. 2018 Jun 1;226(6):978-86.

Frailty Related to Falls & Fractures

Table 3. Falls, Fracture, and Disability According to 1-Year Follow-Up According to Frailty Status From Age-Adjusted and Multivariable Models

	W.	Age Adjusted	~	Multivariable				
Frailty Status According to Outcome	n	OR (95% CI)	P-Value	n	OR (95% CI)	P-Value		
Falls	48,154		< .001 ^a	44,528		< .001 ^b		
Prefrail	0.000 Proto 000 A	1.57 (1.47-1.68)			1.23 (1.13-1.32)			
Frail		3.35 (3.13-3.58)			1.68 (1.54-1.83)			
Fracture	47,780		< .001°	44,072		< .001 ^d		
Prefrail		1.39 (1.22-1.58)			1.23 (1.07-1.42)			
Frail		1.97 (1.73-2.25)			1.46 (1.26-1.70)			
Disability	46,273	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	< .001 ^e	40,332	,	< .001 ^f		
Prefrail		2.04 (1.90-2.20)			1.85 (1.70-2.01)			
Frail		3.27 (3.03–3.52)			2.29 (2.09-2.51)			

- Frailty is associated with:
 - ≥2 falls: OR = 1.74 (Cl, 1.19-2.55)²
 - ≥2 fractures: OR of 3.67 (Cl, 1.47-9.15)³

In summary...

- Older people with frailty have an increased likelihood of unmet care needs, falls and fractures, hospitalisations, lowered quality of life, iatrogenic complications, and early mortality^{1–6}
- The rapid expansion of the ageing population lead to a concomitant rise in the number of older adults with frailty^{7,8}
- Frailty is one of the most serious global public health challenges
- An increased pressure on health-care systems worldwide⁹

1-Clegg A et al, Lancet 2013; 381: 752–62. 2-Hoogendijk EO et al, Arch Gerontol Geriatr 2014; 58: 37–42. 3 Vermeiren S et al, J Am Med Dir Assoc 2016; 17: 1163.e1–17 4-Junius-Walker U et al, Eur J Intern Med 2018; 56: 3–10. 5-Fried LP et al, J Gerontol A Biol Sci Med Sci 2001; 56: M146–56. 6-Yang X et al, J Am Heart Assoc 2018; 7: e008251. 7-Yu R et al, Age Ageing 2018; 47: 254–61. 8-Mousa A et al, Age Ageing 2018; 47: 721–27. 9-Ilinca S et al, Health Serv Res 2015; 50: 305–20.

THE LANCET

www.indiatectic.com

Volume 214 - Wandow SI 205 - Proper 1257-1385 - October 12-12, 2015

Frailty: "the new frontier of medicine".

See Seites pages 1365 wat 1376

Editorial	Comment	Articles	Articles	Antides
1-organistics time to inalign our approach? Init page 129	Made along polog problems the served heads needs of unaccompanied magnate young people begap 128.	Perturbaneous conservy internetion varias conservy artisty biplass grafting in conserve activity disease ine pape 101.	Prediction of mortality based on periodic repolarisations dynamics in definition implementation implementation	Institicumals for the treatment of searcaneolitic optical spectrum distribution servage of c

How to measure Frailty?

Generalizable .

Both self report, physical

0

Ο

Ο

0

Ο

۲

٠

tests

Frailty Index (Rockwood)

Frailty as an accumulation of deficits...

"the more things people have wrong with them, the higher the likelihood of frailty"

> Rockwood, *J Geron Med Sci*, 2007. Mitniski, Song, Rockwood , *J Geron Med Sci*, 2004.

CaMos Frailty Index (n=30)

health

 Osteoarthritis Hypertension Rheumatoid Arthritis Thyroid disease Breast cancer Uterine/Prostate cancer 	 Neuromuscular disease (Parkinson's, MS) Inflammatory bowel disease Heart attack Stroke Diabetes (Type 1 & 2) Kidney disease Phlebitis/thrombophlebitis
Vision limitationHearing limitation	Walking limitationDexterity limitationCognition problem
 Reduced daily work/other activities (last 4-wks) Interference with social activities (last 4-wks) Limitation in moderate 	 activities (e.g. vacuuming) Limitation in lifting/carrying groceries Limitation climbing flight stairs Limitation climbing flight stairs
 Declining Change in general health 	 Low Energy Feel Tired Frailty score = Deficits present Deficits possible

*Adapted Ince 30-Joint Califor Frails Index. Harmedy et al. Osteoporosis International, (col.25)(12), 2014.

Out Text C Dates What is your ability to walk in your neighbourhood (with or without walking aids)? Good (e.g. more than 2 blocks) Fair (e.g. 2 blocks max) Poor (e.g. car to home) Not at all and the second se

*Adapted from: Kennedy et. Osteoporosis International, 2014.

Clinical Frailty Scale

Clinician used clinical judgment to assign a frailty score between 1 (robust) and 9 (terminally ill), based on history and physical exam (cognition, mobility, function, co-morbidities)

Clinical Frailty Scale*

I Vary Fit – People who are robust, active, energetic and motivated. These people commonly exercise regularly. They are among the fittest for their age.

 Well – People who have no active disease symptoms but are less fit than category 1. Often, they exercise or are very active occasionally, e.g. seasonally.

 Maraging Well – People whose medical problems are well controlled, but are not regularly active beyond routine walking.

4 Vulnerable – While not dependent on others for daily help, often symptoms limit activities. A common complaint is being "slowed up", and/or being tired during the day.

5 Mildly Frail – These people often have more evident slowing, and need help in high order IADLs (finances, transportation, heavy housework, medications). Typically, mild fraility progressively impairs shopping and walking outside alone, meal preparation and housework.

6 Moderately Frail – People need help with all outside activities and with keeping house inside, they often have problems with stairs and need help with bathing and might need minimal assistance (cuing, standby) with dressing. 7 Severely Frail – Completely dependent for personal care, from whatever cause (physical or cognitive). Even so, they seem stable and not at high risk of dying (within – 6 months).

8 Very Severely Frail – Completely dependent, approaching the end of 8fe Typically, they could not recover even from a minor illness.

 Ferminally III - Approaching the end of Me. This category applies to people with a life expectancy <6 months, who are not otherwise evidently frail.

Scoring frailty in people with dementia

The degree of fraity corresponds to the degree of dementia. Common symptoms in mild dementia include forgetting the details of a recent event, though till remembering the event itself, repeating the same questionistory and social withdrawal.

In moderate dementia, recent momony is very impained, even though they seemingly can remember their past life events well. They can do personal care with prompting.

In severe dementia, they cannot do personal care without help.

 L Canadan Suziy on Hisikh & Aging Revised 2008.
 X Rodowood et al. A global divisal measure of Revise ant Iraily in olderly people. (214):2020;172:409-495.

8.307 200 Keyler, CJ.Al. reprintersort Content Periods Research Oliboutin of Verying Fulliss, Canada Romission granted to only for research and edited on the president only.

Clinical Frailty Scale (CFS) Training Module

This course, developed by the AIMS Research Group led by Dr. Daniel McIsaac, and collaborators, seeks to provide learners with a comprehensive understanding of frailty and how to accurately determine a person's Clinical Frailty Scale score based on their specific circumstances.

https://rise.articulate.com/share/deb4rT02lvONbq4AfcMNRUudcd6QMts3#/

Short Physical Performance Battery

- SPPB¹ is composed of
 - A. Chair Stands (0-4)
 - B. Balance Test (0-4)
 - C. 8 Foot Walk (0-4)

- SPPB¹ is a continuous measure range: 0-12, when
 - 0-4 = poor lower extremity function
 - 5-7 = intermediate lower extremity function
 - 8-12 = Good lower extremity function
- SPPB has been validated and has demonstrated good internal consistency^{2,3}

Research Note/Note de recherche

The Short Performance Physical Battery Is Associated with One-Year Emergency Department Visits and Hospitalization*

Ahmed M. Negm,^{1,2} Courtney C. Kennedy,^{1,3} Janet M. Pritchard,^{1,4} George Ioannidis,^{1,3} Vasilia Vastis,¹ Sharon Marr,^{1,3} Christopher Patterson,^{1,3} Brian Misiaszek,^{1,3} Tricia K. W. Woo,^{1,3} Lehana Thabane,⁵ and Alexandra Papaioannou^{1,3}

Commonly used frailty instruments

	Components	Frailty classification	Setting			
			Primary care	Hospital	Long-term care facility	
Failty pivenotype ¹	Five items: weight loss, invo physical activity, exhaustion, slowness, weakness	Failty: >3 items; pre-frailty: 1-2 items; robust: 0 items	Vins	Ves	Ves	
frailty Index ¹¹⁰	30 or more accumulated health deficits: scores range from 0 (no deficits) to 1 (all deficits)	Continuous score; suggested cutoff score for fiaility >0-25"	Yes	Ves	Yes	
Bectronic Fraility Indec	As for the Frailty Index, with variables derived from routine electronic health records in primary care; also considered to be a case-finding instrument.	Severe failty: score >0.36; frailty: score >0.24-0.36; mild failty: score >0.12-0.24; fit: score <0.12	Yes	No	No	
Clinical Faility Scale*	Visual and written chart for faility with nine graded pictures: Levery fit; 9-terminally ill	Frailty: score >5	Virs	View	Yes.	
FRAIL scale"	Five items: futigue, resistance, ambulation, illness, loss of weight	Fiailty: 23 items: pre-frailty: 1-2 items: robust: 0 items	Yes	Was	Yes	
Study of Ostemporatic Fractores fraity criteria=	Three items: weight loss, exhaustion, unable to rise from a chair five times	Frailty: a2 items; pre-frailty: 1 items; robust: 0 items	Yes	Yes	No	
PRISMA-1"	Seven self-reported items: age (>85 years), male, social support, and ADLs	Frailty: score a3	Yes	No	NO	
Tilburg Fisility Indicator*	15 self-reported items in three domains: physical, psychological, and social	Frailty: score #5	Yes	No	ND	
Gesiatric 8 frailty questionnaire for oncology (58)*	Eight items: function (ADL and IADL), mobility, nutrition, comorbidity, cognition, depression, social support	Frailty: score s14	No	Yes	No	
Groningen FreiltyIndicator*	15 self-reported items is four domains: physical, cognitive, social, psychological	Frailty: score #4	Yes	No	No	
Short Physical Performance Battery®	Three measured items: gait speed, standing balance, and repeated chair stands: each item scored from 0-4, maximum score of 12	Fiailty: score #9	Yes	No	No	
Edmonton FrailtyScale®	Nine items: cognition, health $(2 \times)$, hospitalisation, social support, nutrition, mood, function, continence	Frailty: score 27	No	Yes	No	
Multidimensional Prognostic Indioc [®]	Eight Items: comorbidity, nutrition, cognition, polypharmacy, pressure sore risk, IMing status, ADL, IADL	Fraility: score >0-66; pre-fraility: score 0.34-0-66; robust score <0-34	Yes	Yes	No	
Kihon Checklist ⁴⁷	25 dichotomous items in seven categories: physical strength, nutrition, eating, socialisation, memory, mooil, and lifestyle; scoring as per the Frailty Index	Continuous score; suggested fraility cutoff score >0-25	Yes	Yes	No	
Frailty Risk Score**	Formula: age (per 10 years) = 4 + male sex = 10 + no partner × 5 + body mass index <18-5 kg/m ² × 12 + cardiovascular disease × 4 + diabetes × 4 + normber of drugs >2 × 5, EMS <20 × 5 + ADL motor deficit × 4 + ADL process deficit × 7. Also considered to be a case finding instrument.	Very good: score <45; good: score 45;50; moderate: score 51-55; poor: score 56-61; very poor: score >61	No	Yes	No	
the second s	109 summed items from KD-10 fraity-relevant codes from administrative	Low risk: score <5: intermediate risk:	No	Ves	No	

Treatment/prevention

JAMDA 20 (2019) 1190-1198

Review Article

Management of Frailty: A Systematic Review and Network Meta-analysis of Randomized Controlled Trials

Ahmed M. Negm MD, PhD, MSc^{a,b,+}, Courtney C. Kennedy PhD^a, Lehana Thabane PhD^c, Areti-Angeliki Veroniki PhD^{d,e,f}, Jonathan D. Adachi MD^g, Julie Richardson PhD^{b,c}, Ian D. Cameron MBBS, PhD^h, Aidan Giangregorio BSc^a, Maria Petropoulou MSc^d, Saad M. Alsaad MD¹, Jamaan Alzahrani MD^J, Muhammad Maaz BSc^k, Muhammad M. Ahmed BSc^k, Eileen Kim BSc^k, Hadi Tehfe BSc^k, Robert Dima BSc¹, Kalyani Sabanayagam BSc^k, Patricia Hewston PhD^a, Hajar Abu Alrob BSc^c, Alexandra Papaioannou MD^{a,C,g} Check for updates

Frailty Network Meta-analysis

- Aim: to determine the comparative effect of interventions targeting the prevention or treatment of frailty
- We identified relevant RCTs, in any language and publication date, by a systematic search of databases including MEDLINE, EMBASE, CINAHL, AMED, the Cochrane Central Registry of Controlled Trials (CENTRAL), HealthSTAR, DARE, PsychINFO, PEDro, SCOPUS, and Scielo
- We assessed risk of bias (using the Cochrane Risk of Bias tool) of eligible studies

Frailty Interventions

- We compared 10 types of interventions
 - Physical activity
 - Physical activity and Protein or Nutrition supplementation
 - Psychosocial or cognitive training
 - Medication management
 - Pharmacotherapy
 - Multifaceted interventions
 - Geriatric Comprehensive Assessments
 - Nutrition Only
 - Placebo/standard care
 - Vibration wave or sound waves

Frailty Interventions Network

Negm AM et al, JAMDA. 2019 Oct ; 20 (10) 1190-1198.

Frailty Interventions Vs. Control

Physical activity -0.92 [-1.55, -0.29] Physical activity and protein -0.61 [-1.43, 0.20] or nutrition supplementation -0.49 [-1.09, 0.11] Psychosocial or cognitive training Pharmacotherapy -0.50 [-1.31, 0.31] Multifaceted -0.45 [-1.11, 0.20] Geriatric Comprehensive Assessments -0.15 [-1.45, 1.10] -0.30 [-0.83, 0.21] Nutrition only -1.5 -2 -0.50.5 1.5 0 -1Standardized Mean Difference

Treatments

Standardized Mean Difference [95% Crl]

Negm AM et al, JAMDA. 2019 Oct ; 20 (10) 1190-1198.

33

Most effective treatment

Treatment Ranking								
Treatment	median SUCRA	Low Crl	High Crl					
PHYS_ACT	0.86	0.43	1.00					
PHYS_ACT+PROT/NUTR	0.71	0.00	1.00					
PSYCH	0.57	0.00	1.00					
PHARM	0.57	0.00	1.00					
MULTI	0.43	0.00	1.00					
GERIA	0.29	0.00	1.00					
NUTR	0.43	0.00	0.86					
PLAC/STD	0.14	0.00	0.57					

Secondary Outcomes Network

Negm AM et al, JAMDA. 2019 Oct ; 20 (10) 1190-1198.

Rank-heat plot All outcomes

J Nutr Health Aging. 2019;23(9):771-787

@ The Author(s)

PHYSICAL FRAILTY: ICFSR INTERNATIONAL CLINICAL PRACTICE GUIDELINES FOR IDENTIFICATION AND MANAGEMENT

E. DENT^{1,2}, J.E. MORLEY³, A.J. CRUZ-JENTOFT⁴, L. WOODHOUSE⁵, L. RODRÍGUEZ-MAÑAS⁶, L.P. FRIED⁷, J. WOO⁸, I. APRAHAMIAN⁹, A. SANFORD³, J. LUNDY¹⁰, F. LANDI¹¹, J. BEILBY¹, F.C. MARTIN¹², J.M. BAUER¹³, L. FERRUCCI¹⁴, R.A. MERCHANT¹⁵, B. DONG¹⁶, H. ARAI¹⁷, E.O. HOOGENDIJK¹⁸, C.W. WON¹⁹, A. ABBATECOLA²⁰, T. CEDERHOLM²¹, T. STRANDBERG^{22,23}, L.M. GUTIÉRREZ ROBLEDO²⁴, L. FLICKER²⁵, S. BHASIN²⁶, M. AUBERTIN-LEHEUDRE²⁷, H.A. BISCHOFF-FERRARI²⁸, J.M. GURALNIK²⁹, J. MUSCEDERE³⁰, M. PAHOR³¹, J. RUIZ³², A.M. NEGM³³, J.Y. REGINSTER³⁴, D.L. WATERS³⁵, B. VELLAS³⁶

	Recommendation	Grade	Certainty of Evidence			
Frailt	Frailty Screening					
1	All adults aged 65-75 years and over should be offered screening for frailty using a validated rapid frailty instrument suitable to the specific setting or context	Strong	Low			
Frailt	y Assessment					
2	Clinical assessment of frailty should be performed for all older adults screening as positive for frailty or pre-frailty	Strong	Low			
Deve	lopment of a Comprehensive Management Plan					
3	A comprehensive care plan for frailty should systematically address polypharmacy, the management of sarcopenia, treatable causes of weight loss, and the causes of fatigue (depression, anemia, hypotension, hypothyroidism, and vitamin B12 deficiency)	Strong	Very Low			
4	Where appropriate, persons with advanced (severe) frailty should be referred to a geriatrician	CBR	No data ⁺			
Physical Activity/Exercise						
5	Older people with frailty should be offered a multi-component physical activity program (or those with pre-frailty as a preventative component)	Strong	Moderate			
6	Health practitioners are strongly encouraged to refer older people with frailty to physical activity programmes with a progressive, resistance- training component	Strong	Moderate			

Dent E et al, The journal of nutrition, health & aging, 23 (9) 771-787 (2019).

	Recommendation	Grade	Certainty of Evidence		
Nutri	tion and Oral Health				
7	Protein/caloric supplementation can be considered for persons with frailty	Conditional	Very Low		
•	when weight loss or undernutrition has been diagnosed				
8	Health practitioners may offer nutritional/protein supplementation paired	Conditional	Low		
	with physical activity prescription				
9	Advise older adults with frailty about the importance of oral health	CBR	No data [†]		
Pharr	macological Intervention				
10	Pharmacological treatment as presently available is not recommended	CDD	Vorulow		
	therapy for the treatment of frailty	CDK	very LOW		
Additional Therapies and Treatments					
11	Vitamin D supplementation is not recommended for the treatment of frailty		Vorylow		
	unless vitamin D deficiency is present	CDN	veryiow		
12	Cognitive or problem-solving therapy is not systematically recommended	CDD	Vorylow		
12	for the treatment of frailty	CDN	veryiow		
13	Hormone therapy is not recommended for the treatment of frailty	CBR	Very low		
	All persons with frailty may be offered social support as needed to address				
14	unmet needs and encourage adherence to the Comprehensive Management	Strong	Very low		
	Plan				
15	Persons with frailty can be referred to home-based training	Conditional	Low		

Sarcopenia

What is sarcopenia?

- Sarcopenia, derived from the Greek term meaning "poverty of flesh," was first described by Irwin Rosenberg in the 1980s¹
- Originally conceived as a loss of muscle mass in an older adult
- In 2010, it was redefined as the loss of muscle function or strength in the presence of low lean body mass^{2,3}

Rosenberg IH. Sarcopenia: Origins and clinical relevance. J Nutr 1997;127:9905- 9915. 2- Cruz-Jentoft et al, Age Ageing 2010;39:412-423.
 Fielding RA et al, J Am Med Dir Assoc 2011;12:249-256.

Author, year and study name (when applicable)	Sarcopenia component
Newman, 2003 ¹	
Baumgartner, 2000 ²	
Baumgartner, 2004 ³	Muscle Mass
Villareal, 2005, ASN–TOS ⁴	
Bouchard, 2009 ⁵	
Fielding, 2011, IWGSP ⁶	Physical function
	Muscle Mass
Cruz-Jentoft, 2010, EWGSOP ⁷	Muscle Mass
	Muscle strength
	Physical performance
Studenski, 2014, FNIH ⁸	Muscle Mass
	Muscle strength
Asian Working Group for	Muscle Mass
Sarcopenia, 2014	Muscle strength
	Physical performance

1- Newman AB et al, J. Am. Geriatr. Soc 51, 1602–1609 (2003). 2- Baumgartner RN, Ann. NY Acad. Sci 904, 437–448 (2000). 3- Baumgartner RN et al. Obes. Res 12, 1995–2004 (2004). 4- Villareal DT et al. Am. J. Clin. Nutr 82, 923– 934 (2005). 5- Bouchard DR et al, Obesity (Silver Spring) 17, 2082–2088 (2009). 6- Fielding RA et al, J. Am. Med. Dir. Assoc 12, 249–256 (2011). 7- Cruz-Jentoft AJ et al, Age Ageing 39, 412–423 (2010). 8- Studenski & et al, J. Gerontol. A Biol. Sci. Med. Sci 69, 547–558 (2014). 9- Chen LK et al, J. Am. Med. Dir. Assoc 15, 95–101 (2014). 10- Batsis JA et al, *Nat Rev Endocrinol*. 2018;14(9):513–537

- Secondary sarcopenia: occurs in persons with chronic diseases, e.g., diabetes mellitus¹
- Dyapenia: loss of muscle strength
- Sarcopenic obesity: the excess adipose tissue masks the loss of muscle, but yet the loss of muscle results in profound loss of strength and function²

 Obesity is defined as an unhealthy excess body fat that increases the risk of medical illness and mortality^{1,2}

MRI of individuals with and without obesity.

Why Sarcopenia is important?

Sarcopenia prevalence

Sarcopenia and adverse outcomes

- 1- Pichard C et al, Am J Clin Nutr. 2004;79:613-618.
- 2- Wolfe RR, Am J Clin Nutr. 2006;84(3):475-482.
- 3- von Haehling S et al, J Cachexia Sarcopenia Muscle. 2010;1:129-33.
- 4- Cruz-Jentoft AJ et al, Age Ageing. 2010;39:412-23.
- 5- Litchford, MD, Nutrition in Clinical Practice. 2014;29(4)428-434
- 6- Janssen I et al, J Am Geriatr Soc. 2002;50:889–96.
- 7-<u>http://fightsarcopenia.com/</u>

Sarcopenia has a negative impact on patients' quality of life and often leads to:

- Increased inpatient length of stay¹
- A decline in daily activities and ambulatory function, Reduced day-to-day activities^{1,2}
- Increased risk of illness and infection^{2,3}
- Reduced recovery from surgery, illness, and injury^{2,3}
- Poor wound healing³
- hip fracture⁴
- Increased mortality³

1- Pitchard C et al, Am J Clin Nutr. 2004;79:613-618. 2- Wolfe RR. Am J Clin Nutr. 2006;84(3):475-482.

3- Demling RH. Eplasty. 2009;9:65-94. 4- Morley JE et al, J Nutr Health Aging (2019) 23: 768.

Sarcopenia and mortality

How to measure Sarcopenia?

Anthropometry

Skinfold thickness¹

Calf circumferences²

1- https://weightology.net/the-pitfalls-of-body-fat-measurement-part-5-skinfolds/

2- http://www.lymphedemablog.com/2011/09/15/measuring-for-compression-stockings/

Bioelectrical impedance analysis (BIA)

Dual energy X-ray absorptiometry (DEXA)

<u>https://physics.stackexchange.com/questions/190986/how-are-dual-energy-x-ray-absorptiometry-dxa-dexa-scans-affected-by-surface-st</u>
 <u>http://www.hiphealth.ca/facilities/our-equipment/dual-energy_x-ray_absorptiometry</u>

Computer tomography (CT)/Magnetic resonance imaging (MRI)

Ultrasound

Stringer HJ et al, J Frailty Aging. 2018;7(4):258-261.

Table 1

Characteristics of techniques for the diagnosis of sarcopenia.

	Anthropometry	BIA	DEXA	CT/MRI	Ultrasound
Simplicity	+++	++	+	7 <u>-19</u>	+
Low cost	+++	++	+	-	+
Validity	<u></u> 3	+	++	+++	?
Clinical application	Ŧ	+	+	-	
Research application		Ŧ	++	+++	?

Creatine dilution test

- Excess circulating creatine is changed to creatinine and excreted in urine
- The excretion rate of creatinine is a promising proxy measure for estimating whole-body muscle mass.
- Total body creatine pool size and muscle mass are calculated from D₃creatinine enrichment in urine
- Creatine dilution test results correlate well with MRI-based measures of muscle mass and modestly with measures from BIA and DXA^{1,2}
- The creatine dilution test is mostly used in research

How to measure sarcopenia

Grip Strength

- Measuring grip strength is simple and inexpensive¹
- Requires a calibrated handheld dynamometer¹
- The Jamar dynamometer is validated and widely used for measuring grip strength¹

¹⁻ Roberts HC et al, Age Ageing 40, 423–429 (2011).

^{2- &}lt;u>https://www.healthprofessionalsolutions.com.au/Jamar_Hydraulic_Hand_Grip_Dynamometer_p/jamhd.htm</u>

³⁻ https://today.uconn.edu/2011/06/grip-strength-is-good-indicator-of-overall-health/

Chair Stand Test

- The chair stand test is a proxy for strength of leg muscles
- It measures the amount of time needed for a patient to rise five times from a seated position without using his or her arms
- The timed chair stand test is a variation that counts how many times a patient can rise and sit in the chair over a 30-second interval^{1,2,3}

1- Beaudart C et al, BMC Geriatr 2016; 16: 170 2- Cesari M et al, *J Am Geriatr Soc* 2009; 57: 251–9

3- Jones CJ et al, Res Q Exerc Sport 1999; 70: 113-9

4- https://sielearning.tafensw.edu.au/toolboxes/Toolbox805/fit_tb/fit011_1_lr10/fit011_1_lr10_1_1.htm

How to measure sarcopenia

Gait speed

- Gait speed is considered a quick, safe and highly reliable test for sarcopenia, and it is widely used in practice¹
- A commonly used gait speed test is called the 4-m usual walking speed test^{2,3}
- 400-m walk test: walking ability and endurance⁴

Bruyere O et al, *Eur Geriatr Med* 2016; 7: 243–46
 Maggio M et al, *PLoS One* 2016; 11: e0153583
 Rydwik E et al, *Physiother Theory Pract* 2012; 28: 238–56
 Roberts HC et al, *Age Ageing* 2011; 40: 423–9
 https://www.youtube.com/watch?v=xLScK NXUN0

Short Physical Performance Battery

Timed Up and Go (TUG)

 Individuals are asked to rise from a standard chair, walk to a marker 3 m away, turn around, walk back and sit down again¹

GUIDELINES

Sarcopenia: revised European consensus on definition and diagnosis

Alfonso J. Cruz-Jentoft¹, Gülistan Bahat², Jürgen Bauer³, Yves Boirie⁴, Olivier Bruyère⁵, Tommy Cederholm⁶, Cyrus Cooper⁷, Francesco Landi⁸, Yves Rolland⁹, Avan Aihie Sayer¹⁰, Stéphane M. Schneider¹¹, Cornel C. Sieber¹², Eva Topinkova¹³, Maurits Vandewoude¹⁴, Marjolein Visser¹⁵, Mauro Zamboni¹⁶, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2

Sarcopenia: EWGSOP2 algorithm for case-finding, making a diagnosis and quantifying severity in practice

SARC-F questionnaire

Component	Question	Scoring
Strength	How much difficulty do you have in lifting and carrying 10 pounds?	None = 0 Some = 1 A lot or unable = 2
Assistance in walking	How much difficulty do you have walking across a room?	None = 0 Some = 1 A lot, use aids, or unable = 2
Rise from a chair	How much difficulty do you have transferring from a chair or bed?	None = 0 Some = 1 A lot or unable without help = 2
Climb stairs	How much difficulty do you have climbing a flight of 10 stairs?	None = 0 Some = 1 A lot or unable = 2
Falls	How many times have you fallen in the past year?	None = 0 1 − 3 falls = 1 ≥ 4 falls = 2

EWGSOP2 sarcopenia cut-off points

Test	Cut-off points for men	Cut-off points for women	References		
cut-off points for low strength					
Grip strength	<27 kg	<16 kg	Dodds (2014) [26]		
Chair stand	>15 s for five rises		Cesari (2009) [67]		
cut-off points for low muscle mass					
ASM	<20 kg	<15 kg	Studenski (2014) [3]		
ASM/height ²	<7.0 kg/m ²	<5.5 kg/m ²	Gould (2014) [125]		
cut-off points for low performance					
Cait speed	≤0.8 m/s		Cruz-Jentoft (2010) [1]		
Gait speed			Studenski (2011) [<mark>84</mark>]		
SDDD	<9 point score		Pavasini (2016) [90]		
JPPD	≥o poir	Guralnik (1995) [126]			
TUG	≥20 s		Bischoff (2003) [127]		
400 m walk test	Non-completion or ≥6 min for completion		Newman (2006) [128]		

1- Cruz-Jentoft AJ et al, Age Ageing 48 (1), 16–31 (2019).

Other guidelines

Author, year and study name (when applicable)	Sarcopenia component	Measurement modality (cut-off points)	Validated population
Newman, 2003 ¹	ALM divided by height squared	DXA (men <7.23kg/m ² ; women <5.67kg/m ²)	New Mexico Elder Health Survey
	ALM divided by height and fat mass	DXA (lowest twentieth percentile of residuals (sex-specific))	Health ABC study
Baumgartner, 2000 ²	ALM divided by height squared	DXA (men <7.26kg/m ² ; women <5.45kg/m ²)	New Mexico Aging Process Study
Baumgartner, 2004 ³	ALM divided by height squared	DXA (men <7.26kg/m ² ; women <5.45kg/m ²)	New Mexico Elder Health Survey
Villareal, 2005, ASN–TOS ⁴	ALM divided by height squared	ALM (<5.45kg/m ² , sex is not specified)	Young healthy population
Bouchard, 2009 ⁵	ALM divided by height squared	DXA (men <8.51kg/m ² ; women <6.29kg/m ²)	Nutrition as a Determinant of Successful Aging study
Fielding, 2011, IWGSP ⁶	Physical function	Gait speed (<1m/s)	NA
	Lean mass	DXA (less than the twentieth percentile healthy adults, ALM divided by height squared: men \leq 7.23kg/m ² ; women \leq 5.67kg/m ²)	Health ABC
Studenski, 2014, FNIH ⁷	Weakness	Handgrip strength (men <26kg; women <16kg)	Multiple study cohorts
		Handgrip strength:BMI (men <1.0; women <0.56)	Multiple study cohorts
	ALM	Men <19.75kg; women <15.02kg	Multiple study cohorts
	ALM:BMI	Men <0.789; women <0.512	Multiple study cohorts
Asian Working Group for	ALM divided by height squared	DXA (men <7.0kg/m ² ; women <5.4kg/m ²)	NA
Sarcopenia, 2014°		BIA (men <7.0kg/m ² ; women <5.7kg/m ²)	NA
	Strength	Handgrip strength (men <26kg; women <18kg)	NA
	Performance	Gait speed over 6m (<0.8m/s)	NA

1- Newman AB et al, J. Am. Geriatr. Soc 51, 1602–1609 (2003). 2- Baumgartner RN, Ann. NY Acad. Sci 904, 437–448 (2000). 3- Baumgartner RN et al. Obes. Res 12, 1995–2004 (2004). 4- Villareal DT et al. Am. J. Clin. Nutr 82, 923– 934 (2005). 5- Bouchard DR et al, Obesity (Silver Spring) 17, 2082–2088 (2009). 6- Fielding RA et al, J. Am. Med. Dir. Assoc 12, 249–256 (2011). 7- Studenski SA et al, J. Gerontol. A Biol. Sci. Med. Sci 69, 547–558 (2014). 8- Chen LK et al, J. Am. Med. Dir. Assoc 15, 95–101 (2014). 9- Batsis JA et al, *Nat Rev Endocrinol*. 2018;14(9):513–537

INTERNATIONAL CLINICAL PRACTICE GUIDELINES FOR SARCOPENIA (ICFSR): SCREENING, DIAGNOSIS AND MANAGEMENT

E. DENT^{1,2}, J.E. MORLEY³, A.J. CRUZ-JENTOFT⁴, H. ARAI⁵, S.B. KRITCHEVSKY⁶, J. GURALNIK⁷, J.M. BAUER⁸, M. PAHOR⁹, B.C. CLARK¹⁰, M. CESARI^{11,12}, J. RUIZ¹³, C.C. SIEBER¹⁴,
M. AUBERTIN-LEHEUDRE¹⁵, D.L. WATERS¹⁶, R. VISVANATHAN¹⁷, F. LANDI¹⁸, D.T. VILLAREAL¹⁹, R. FIELDING²⁰, C.W. WON²¹, O. THEOU^{17,22}, F.C. MARTIN²³, B. DONG²⁴, J. WOO²⁵, L. FLICKER²⁶, L. FERRUCCI²⁷, R.A. MERCHANT²⁸, L. CAO²⁹, T. CEDERHOLM³⁰, S.M.L. RIBEIRO³¹, L. RODRÍGUEZ-MAÑAS³², S.D. ANKER^{33,34}, J. LUNDY³⁵, L.M. GUTIÉRREZ ROBLEDO³⁶, I. BAUTMANS^{37,38,39}, I. APRAHAMIAN⁴⁰, J.M.G.A. SCHOLS⁴¹, M. IZQUIERDO⁴², B. VELLAS⁴³
Treatment/Prevention

Guideline	Strength of Evidence	Certainty of Evidence
1A. Older adults aged 65 years and older should be screened for sarcopenia annually , or after the occurrence of major health events	Conditional	++
1B. Screening for sarcopenia can be performed using gait speed, or with the SARC-F questionnaire	Conditional	++
1C. Individuals screened as positive for sarcopenia should be referred for further assessment to confirm the presence of the disease	Conditional	++
2A. It is recommended that health practitioners use an objective measurement tool for the diagnosis of Sarcopenia, utilising any of the published consensus definitions	Conditional	+++
2B. DXA should be used to determine low lean mass when diagnosing sarcopenia	Conditional	++
2C. Walking speed or grip strength should be used to determine low levels of muscle strength and physical performance respectively when diagnosing sarcopenia	Strong	+++
	Guideline1A. Older adults aged 65 years and older should be screened for sarcopenia annually, or after the occurrence of major health events1B. Screening for sarcopenia can be performed using gait speed, or with the SARC-F questionnaire1C. Individuals screened as positive for sarcopenia should be referred for further assessment to confirm the presence of the disease2A. It is recommended that health practitioners use an objective measurement tool for the diagnosis of Sarcopenia, utilising any of the published consensus definitions2B. DXA should be used to determine low lean mass when diagnosing sarcopenia2C. Walking speed or grip strength should be used to determine low levels of muscle strength and physical performance respectively when diagnosing sarcopenia	GuidelineStrength of Evidence1A. Older adults aged 65 years and older should be screened for sarcopenia annually, or after the occurrence of major health eventsConditional1B. Screening for sarcopenia can be performed using gait speed, or with the SARC-F questionnaireConditional1C. Individuals screened as positive for sarcopenia should be referred for further assessment to confirm the presence of the diseaseConditional2A. It is recommended that health practitioners use an objective measurement tool for the diagnosis of Sarcopenia, utilising any of the published consensus definitionsConditional2B. DXA should be used to determine low lean mass when diagnosing sarcopeniaConditional2C. Walking speed or grip strength should be used to determine low levels of muscle strength and physical performance respectively when diagnosing sarcopeniaStrong

Dent E et al, The journal of nutrition, health & aging, 22 (10) 1148-1161 (2018).

Treatment/Prevention

Interventions	Guideline	Strength of Evidence	Certainty of Evidence
3. Physical Activity	3A. In patients with sarcopenia, prescription of resistance-based training may be effective to improve lean mass, strength and physical function	Strong	+++
4. Protein	4A. We recommend clinicians consider protein supplementation/a protein-rich diet for older adults with sarcopenia	Conditional	++
	4B. Clinicians may also consider discussing with patients the importance of adequate calorie and protein intake	Conditional	+
	4C. Nutritional (protein) intervention should be combined with a physical activity intervention	Conditional	++
5. Vitamin D	5A. Insufficient evidence exists to determine whether a Vitamin D supplementation regime by itself is effective in older adults with sarcopenia	Insufficient evidence	+

Treatment/Prevention

Interventions	Guideline	Strength of Evidence	Certainty of Evidence
6. Anabolic Hormones	6A. The current evidence is insufficient to recommend anabolic hormones for the management of sarcopenia	Insufficient evidence	+
7. Pharmacologic Interventions	7A. Pharmacological interventions are not recommended as first-line therapy for the management of sarcopenia	Insufficient evidence	+
8. Research	8A Future international collaboration and large-scale RCTs focusing specifically on older people with sarcopenia are recommended	n/a	n/a

Take Home Message

- Screen/Measure frailty and sarcopenia
- Use an appropriate tool for your setting
- Physical activity is the most effective intervention
- Other interventions are promising
- Future studies are needed to address the knowledge gaps

Email: anegm@ualberta.ca Twitter: @_negm_